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It is shown that the computational effort involved in HF calculations can be 
considerably reduced by applying the following concepts: 1) the use of  a 
localization operator for the direct determination of  localized non-orthogonal 
HF orbitals, 2) the approximation of the interaction potential between different 
localization centres by a Hartree-like ansatz, 3) the successive calculation of  
many-body corrections to molecular properties such as the total energy. A 
numerical application to LiH layers and solid LiH is described. 
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1. Introduction 

The main difficulty with the HF-Roothaan method is, as is generally known, the 
fact that when using n basis functions approximately n4/8 two-electron integrals 
have to be calculated, stored and manipulated within the SCF iterations. 

This difficulty can be overcome by departing from the conventional method which 
involves simultaneous calculation of all orbitals of a molecular system. The ob- 
vious alternative is to divide the system into subsystems each with a relatively small 
number of orbitals, and to treat these subsystems separately, each in the field of  the 
others. However, this partitioning can only lead to a computational simplification, 
if it is coupled with a corresponding partitioning of  the basis set. This is the case 
when different orbital groups belong to different symmetry species o r -  more 
importantly - when the orbitals are localized and different orbital groups belong to 
different localization centres. 

The transformation from canonical HF orbitals to localized orbitals has been 
extensively studied in the past [1-6]. For most of these procedures it is necessary 
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to know the canonical HF orbitals, and a reduction of the computational effort is 
not achieved. A direct calculation has been suggested by different authors [7-13], 
but has been performed in very few cases until now. Two points should be made 
here. Firstly, there is no marked saving of computer time, if the localized orbitals 
are mutually orthogonal: the so-called "orthogonalization tails" of a particular 
orbital would require additional basis functions belonging to neighbouring 
localization centres. Secondly, the use of localized orbitals brings a reduction from 
four-centre to three-centre terms in the Fock matrix, as pointed out by Gilbert and 
Kunz [14], but does not as such eliminate the four-centre terms in the expressions 
for molecular properties such as the total energy. 

A simplification through the use of localized orbitals can therefore only be achieved 
with certain additional approximations. An obvious approximation pertains to the 
interaction between different subsystems; a further approximation considered by 
us deals with the representation of two-centre terms in the first-order density 
matrix. These approximations together with the procedure used by us for calcu- 
lating the localized orbitals are discussed in Sect. 2. The results for the LiH layer 
and solid LiH are given in Sect. 3. 

2.  M e t h o d  

The determination of localized orbitals is achieved by the addition of a localization 
operator of the form pAp to the Fock operator [8]. Here p is the first-order density 
matrix and A a suitably chosen localization potential. The arbitrary nature of A 
should be taken advantage of to keep the additional effort for the calculation of 
p a p  to a minimum. The main problem here is that for non-orthogonal orbitals 

18> p includes the inverse overlap matrix S-  1 

o c t  

p = E <eL (1) 

For large clusters, and in particular for systems with translational symmetry such 
as layers and solids, the effort for the calculation of S- ~ cannot be neglected, 
especially since pAp has to be newly calculated for every step of the SCF iteration. 
We therefore adopt the following procedure. With 

p = po + ( p -  po) (2) 

(where Po is the "partial-density" matrix built up from the orbitals of the subsystem 
under consideration) we get 

pAp = poAPo + poA(p - Po) (3) 
+ ( P -  po)Apo + (P - po)A(P - Po) 

The first and fourth terms on the right-hand side can be ignored as they only bring 
about a transformation within the orbital group under consideration or within the 
complementary subspace. The second and third terms are the important ones, as 
they couple the orbitals under consideration with the orbitals localized at other 
centres. This statement is contrary to the work of Kunz [15, 16], who uses a 
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localization operator of the form poApo; the only possible effect of this operator 
is to reorder the eigenvalues. Retaining the second and third terms in (3) and 
introducing the approximation 

P-Po ~(1 -Po) ~ '  p j(1 -Po) (4) 
J 

we obtain an expression which does not include S- t  but on the other hand is a 
valid localization operator in the sense that it operates on the HF manyfold only. 

The localization potential used by us is 

A =  Z '  Cj-erfc rjl). I t -  4 -1 (5) 
J 

which can be interpreted as a superposition of screened repulsive Coulomb 
potentials surrounding the subsystem under consideration. The matrix elements of 
A have the same structure as those of the electron-nucleus potential. 

In order to assess the influence of the localization operator on the results, we show 
in Fig. 1 for the LiH molecule the dependence of the total energy E on the parameter 
C~ of the localization potential centred on Li. The experimental geometry was 
used and the basis.set consisted of five s functions for both Li and H and one func- 
tion in the bond midpoint (attributed to the H subsystem). Without localization 
the orbitals become too diffuse and the resulting energy is even higher than that of 
the isolated subsystems Li § and H- .  With increasing localization strength the 
energy asymptotically approaches a limit. This means that localization is necessary 
but not critical as long as it is sufficiently strong. This also means that methods 
which do not include localization (e.g. the MCF method of Ladik [17]) could run 
into difficulties for strong overlap of the subsystems. 

- 7 861 

-7.88' 

~-?.90 

a~-7.92 
L L I  

. v 

-7. 84. 

-7.98 | o 1/o 21o 3;o 4'.o s.'o 6;o 7;0 8;o 
c1 

0 O 

910 1'0'.0 

Fig. 1. Total energy E of  the LiH molecule as a function of the parameter C 1 of  the localization poten- 
tial A 1 (cf. Eq. (5)) centred on Li. (The dependence o f E  onA2,  centred on H, is very weak,) The basis set 
b) of  Table 5 was used 
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We now want to assess the computational effort involved in a HF calculation using 
non-orthogonal localized orbitals, and to introduce, step by step, approximations 
of the interaction between different orbital groups to reduce the effort even further. 
Let us, for simplicity, suppose that the molecular system includes M orbitals, 
which are partitioned into k subsystems each with m orbitals. Correspondingly, 
the N basis functions are taken as divided into k groups each with n functions. In a 
conventional HF-Roothaan calculation we have to evaluate ~ N 4 = n4k 4 integrals. 
When using non-orthogonal localized orbitals we only need those Fock matrix 
elements between basis functions of the same subsystem and thus only ~ n 4 k  3 
integrals. 

Owing to the spatial separation of the subsystems, the interactions within the 
molecular system can be classified as strong intra-group and comparatively weak 
inter-group interactions. Accordingly, for the intra-group interaction the Hartree- 
Fock expression should be used, whereas for the inter-group interaction an 
approximate potential such as a Hartree-type potential seems appropriate 

p ~ ~ pj (6a) 
J 

P ~ P0 (6b) 

Here p~ is the partial-density matrix built up from the orbitals of localization 
centrej. (6a) is suitable for representing the Coulomb part of the HF potential; it is 
charge-conserving and exact in the limiting case of non-overlapping subsystems. 
(6b) can be applied in the exchange potential; the Fermi hole corresponds exactly to 
one electron in the approximation (which would not be the case if e.g. an additional 
X~-potential were used for the inter-group exchange [17-]). 

These approximations lead to a reduction of the computational effort by a further 
factor k to ~ n 4 k  2. The question still remains, however, what effect these field- 
approximations have on the calculated localized orbitals. As an example, we have 
calculated the (FH)2 dimer using a (2,1/1) basis set; the Hartree-Fock total energy 
was - 170.15196 [h]. Localizing the orbitals and using the above approximations 
in the iteration process yields orbitals which when inserted in the Hartree-Fock 
energy expression give -170.15143 [h]. The difference is negligible when one 
considers the computational saving. 

A further simplification is possible in the following way: in (6a) one can insert 

pJ = Y / Z  Dpj, jZpj(r)Zqj(r) (7) 
J J p,q 

J p 

Here Dpjqj is the first-order density matrix in the basis-function representation and 
Zp~, Zqj basis functions belonging to localization centrej. The Cpj can be determined 
by a least-squares fit under the restriction of charge conservation. This approxima- 
tion improves as the basis set becomes larger; it refers only to inter-group inter- 
action and reduces the number of integralS necessary for this interaction to approxi- 
mately ,,~n3k 2. As the integrals to be calculated for the isolated subsystems are 
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n4k in number, the intra-group effort is predominant for systems with n > k, and 
a further reduction of the inter-group effort is not worthwhile. 

Two questions arise: 1) How can one in a simple way determine molecular pro- 
perties such as the total energy from the non-orthogonal localized orbitals obtained 
in the SCF iteration? 2) Is it possible to successively improve on the above- 
mentioned approximations if required ? 

The following procedure for the total energy serves to illustrate our method as a 
whole. The first step is to calculate the total energy E 0 using a suitable approxima- 
tion (to be dealt with below) for the first-order density matrix p. We then couple a 
pair i,j of  neighbouring subsystems to a new, larger subsystem and repeat the 
calculation. (If one does not want to improve the orbitals, the SCF iteration does 
not have to be repeated.) The total energy Eo(i,j) is now evaluated as in the first 
step, and we denote the difference AEij-Eo(i,j ) - E  o as the two-body correction 
for the subsystems i,j. In this way it is possible to determine all relevant two-body 
corrections AE~j which are not equivalent by symmetry, and subsequently, if 
required, three-body corrections AEijk, and so on. Thus one gradually approaches 
the HF total energy which is an upper limit for the true total energy. 

The method is only practicable if the number of  non-negligible many-body 
corrections is small. The choice of the approximation for p, or more exactly, the 
approximation for S -  t in the expression (1) for p, proves to be crucial. Symmetri- 
cally orthogonalizing within each subsystem, and setting S~-p 1 = 0  otherwise, we 
obtained slow convergence for solid LiH and even divergence of  the many-body 
expansion for diamond. This is also illustrated in Table 1, where the HF energy for 
solid LiH is given for various stages of the L6wdin expansion of S -  1 ; with the 
minimal basis set the L6wdin expansion converges, but third-order terms are 
necessary to ensure accuracy to 5.10 -3 [hi ;  with the larger basis set the L6wdin 
expansion does not seem to converge at all. 

The conclusion is that the exact S -  1 should be taken for p, to obtain a practicable 
many-body expansion. As S -  1 only has to be calculated once, little extra effort is 
involved. For  clusters S -  1 can be determined directly; for layers and solids we use 
an iterative process 

(S-1) ,+1 =(2- (S -~) ,S ) ' (S -1 ) ,  (S) 

(S-  1) 0 = 2 . 1  

For  2 = 1 (8) is identical with the L6wdin expansion, the nth iteration step including 

Table 1. Total energies E for solid LiH (NaCI structure, lattice constant a=3.803 l-b]) for various 
stages of the L6wdin expansion of S -  ~. S-= 1 - S.  a) and b) refer to basis sets c 0 and/3) of Table 7 

a) b) 

E(S ~ 1 )  --6.7279 [hi  -8.1258 [hi 
E (S -~ ~ 1 +S-) -6.6605 -7.9964 
E (S-1 ~ 1 + S - + S 2 + S  3 ) -6.6689 -7.9537 
E (S -1 exact) -6.6719 --8.0328 



16 

Step of  
iteration S711 S~-2 ~ $22 ~ 

1 0.9464 0.0375 1.0483 
2 1.0152 0.0505 1.2438 
3 1.0213 0.0534 1.2985 
4 1.0214 0.0535 1.3021 
5 1.0214 0.0535 1.3021 

H. Stoll and H. Preug 

Table 2. Convergence pattern oftheinverse overlap matrix 
S- 1 for solid LiH (NaC1 structure, lattice constant a = 3.803 
[b]). The basis set used is a) of Table 7 

2" terms of  the series; by suitable choice of  2 the convergence behaviour can be 
controlled, for 2 = 0.5 rapid convergence has been achieved in all cases treated so 
far. Table 2 shows the convergence pattern for solid LiH (minimal basis set). 

Using the exact S -  1 we can write the many-body expansion for p in a form similar 
to that given by Magnasco and Musso [-18] 

P= Z Pi + Z Api + Z Apij (9) 
i i ij 

with 

Pi+ Api= E I~i> (~i[ 

Apij= E I =i) (s=7,~j + fi=~,aJ 

k=i,j 
Y 

Here Pi is the least-squares fitted electron density of  subsystem i; [~i3 denotes 
orbital ~ of  subsystem i. The corrections Ap~, Apo correspond to a vanishing charge 

Tr(Ap~) = Tr(Apij) = 0 (10) 

With (9) convergence of the many-body expansion is guaranteed. For  the total 
energy at most four-body corrections occur. The two-body approximation includes 
basically the following terms 

h APij, E Pk APij, Pi Apj ,  ( l l a )  
k 

Api Apj, Api~i Api, Api j Api j 

(Here h is the one-electron part  of  the Fock operator.)  The three-body approxima- 
tion contains additional terms 

Api j Apk , dpi j Apj k ( l l b )  

the four-body approximation the terms 

Api j Apt  I (1 lc) 

The first two terms in ( l l a )  already represent the most important  three-body 
contributions, which are essential in particular for metallic bonding [19, 20]; 
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Table 3. Computation times for the LiH layer, solid LiH (lattice constant 3.8 [b]) and diamond 
(equilibrium geometry) using various basis sets for a) determination of localized orbitals, b) a two-body 
correction, c) a three-body correction 

Basis set a) b) c) 

solid LiH ls/ls 2.98 sec 0.45 sec 0.78 sec 
5s/5s 38.0 13.0 33.0 

LiH layer ls/ls 1.04 0.33 0.58 
5s/5s 19.0 10.0 25.0 

diamond 2s/lp 9.8 5.5 10.0 

(1 lb )  and  (1 lc)  do no t  con ta in  any m o n o p o l e - m o n o p o l e  in teract ions ,  and  con-  
sequent ly  should  be compara t i ve ly  small .  

In o rde r  to judge  relat ive c o m p u t a t i o n  t imes and orders  o f  magn i tude  o f  the many-  
body  con t r ibu t ions  to the to ta l  energy,  we give in Tables  3 and  4 examples  for L i H  
layers,  sol id L i H  and  d i amond .  F r o m  these we can see tha t  the ca lcula t ion  o f  the 
m a n y - b o d y  te rms requires  v i r tua l ly  the same a m o u n t  o f  t ime as the ca lcula t ion  o f  
the local ized orb i ta l s  and  that  the convergence  is sa t is factory  even in the case o f  
d i a m o n d ,  where the o rb i t a l  over lap  is very strong.  

3. App l i ca t ion  to L i H  

3.1. The L i H  molecule 

Resul ts  for  to ta l  energy, equ i l ib r ium dis tance  and force cons tan t  are given in 
Table  5. Each subsys tem in our  ca lcula t ions  consis ted o f  one  o rb i t a l ;  to descr ibe  
the  po la r i za t ion  o f  the orb i ta l  local ized on H one basis funct ion in the b o n d  
m i d p o i n t  (b in Tab le  7) and  an add i t iona l  funct ion on Li (c in Tab le  7) were used. 
The  results  are in each case c o m p a r e d  with conven t iona l  H F  results.  The  agreement  
is sa t is factory.  

3.2. The L i H  layer 

Three  different  basis  sets were used. Table  6 shows the o rde r  o f  magn i tude  o f  
var ious  two-  and th ree -body  correct ions ,  equ i l ib r ium lat t ice constants ,  to ta l  energy,  

Table 4. Total energies in a) the one-body, b) the two-body, c) the three-body approximation for the 
LiH layer, solid LiH (lattice constant 3.8 I-b]) and diamond (equilibrium geometry) using various basis 
sets 

Basis set a) b) c) 

solid LiH Is~Is -6.7218 [hi -6.6730 [hi 
5s/5s - 8.1499 - 8.0340 

LiH layer ls/ls -6.7129 -6.6607 
5s/5s - 8.1274 - 8.0301 

diamond 2s/lp - 77.4007 72.3574 

-6.6718 
- 8.0320 
-6.6600 
-8.0295 
-72.3926 
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Table 5. Total energy E, equilibrium distance a and force constant  K for the LiH molecule a) without, 
b) with basis function in the bond midpoint,  c) with an additional basis function ~1 =0.461 at Li con- 
tributing to the orbital localized on H. In every second column results from conventional HF  calcula- 
tions are given 

Basis set: Li s: 111.0, 28.2, 7.19, 1.82, 0.461 
H s: 13.71, 3.425, 0.856, 0.214, 0.054 
bond-midpoint :  0.21 

E [h] a [b] K [mdyn/A 

a) -7 .9502  -7 .9520  
b) -7 .9616  -7 .9723  3.158 3.051 1.312 1.221 
c) -7 .9703  -7 .9723  3.058 3.051 1.227 1.221 

lattice energy and the second derivative of the total energy with respect to the lattice 
constant, each in the two- and the three-body approximation. The results show 
that it is important to exceed the minimum basis quality. 

Table 6. Order of  magni tude for various two-body and three-body corrections, equilibrium lattice 
constant  a, total energy E, lattice energy Eo, K= O2E/Oa2 for the LiH layer (cubic lattice structure) 
using basis sets cO, ]~), y). In the last four rows the upper entries refer to two-body, the lower entries to 
three-body results 

Basis sets: 
~) Li: 1.995 

H: 0.187 
fl) Li: 111.0, 28.2, 7.19, 1.82, 0.461 

H: 13.71, 3.425, 0.856, 0.214, 0.054 
y) Li: 921.271, 138.73, 31.9415, 9.35329, 3.15789, 1.15685, 0.44462 

H: 148.273, 22.174, 4.9701, 1.3704, 0.43666, 0.15585, 0.06074 

~) /~) ~) 

2-body corrections l-hi 
L i -H  8.10 -3 2 .10 2 
H - H  6.10 -3 , - 1 0  -4  2 .10 -2 , 10 -4  

3-body corrections [hi  
H - L i - H  1.10 -4  3-10 -4  
H - H  H - 1 . 1 0  -6 - 9 . 1 0  -5 
a [b]  3.669 3.746 

3.688 3.756 
E [hi  -6 .6609  -8 .0301 

- 6.6601 - 8.0295 
Eo I-hi 0.3613 0.3191 

0.3605 0.3185 
K [-mdyn//~] 2.42 1.13 

2.50 1.17 

2.10 -2 
10 -2 ' - 3 . 1 0  -4  

3.10 -4  
5.10 -6 

3.770 
3.792 

-- 8.0459 
-- 8.0447 

0.3265 
0.3253 
1.21 
1.22 
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3.3. Solid L i H  

Table 7 gives the equilibrium properties for solid LiH in the NaC1 structure, 
Table 8 for LiH in the CsC1 structure. The partioning of the two- and three-body 
corrections according to different energy contributions shows that the Coulomb 
terms are by no means negligible compared with the exchange terms, in contrast 
to the assertion of Gordon and Kim [21]. Experimental results are 3.87 [b] for the 
equilibrium lattice constant and 0.346 [hi for the lattice energy of LiH in the NaC1 
structure. The results with basis set c0 are in satisfactory agreement with the FSGO 
calculations of Erickson and Linnett [22] (-6.673 [h] for the total energy and 
3.803 [b] for the lattice constant). 

4. Conclusion 

Using direct localization and approximating the interaction between orbital groups 
belonging to different localization centres, the effort for calculating localized HF 
orbitals can be reduced to the magnitude of the effort necessary in the case of 
isolated subsystems. The evaluation of quantities such as the total energy, orbital 

Table 7. Order of  magni tude for various two-body and three-body corrections, partitioning of the 
total two-body and three-body correction according to different energy contributions, equilibrium 
lattice constant  a, total energy E, lattice energy Eg, and K =  02E/aa 2 for solid LiH (NaCI structure) 

Basis sets : 
~)  Li: 1.995 H: 0.204 
fl), ~) as in Table 6 

~) #) ~) 

2-body corrections [h] 
L i -H  
H - H  

3-body corrections [hi  
H - L i - H  
H - H - H  

2 - a n d  3-body contri- 
butions of  
kinetic energy 
electron-nucleus 
energy 
electron-electron 
energy (Coulomb part) 
exchange energy 
a [b] 

E [ h ]  

E o [h] 

K [ m d y n / ~ ]  

6 .10 -3 ;  1.10 -6  1 .10-2 ;  - 9 . 1 0  -5 1 210-2; - 4 . 1 0  -5 
3 .10 -3 ;  - 9 . 1 0  -5 9 .10 -3 ;  _ 1 . 1 0  -4  5 .10 -3 ;  - 3 . 1 0  -4  

6.10 -5 1 - 1 0  -4  2.10 -4  
9.10 -5 9.10 -5 2 .10 -4  

4 .10 -2 ;  0 1 . 1 0 - i ;  

3 .10-3 ;  5.10 -6 _ 8 . 1 0 - 2 ;  

3 . 1 0 - z ;  2.10 4 1 .10-x ;  
_ 2 . 1 0 - 2 ;  1.10 -3 - 6 . 1 0 - 2 ;  

3.772 3.986 3.938 
3.806 4.009 3.999 

- 6.6734 - 8.0345 - 8.0548 
- 6.6"/19 - 8.0328 - 8.0520 

0.3738 0.3235 0.3354 
0.3723 0.3218 0.3326 
2.32 0.65 1.02 
2.39 0.78 1.08 
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Table 8. Order of magnitude for various two-body and three-body corrections, equilibrium 
lattice constant a, total energy E, lattice energy Eo, and K =  g2E/Oa2 for solid LiH (CsC1 
structure) using basis sets ~), 7). In the last four rows the upper entries refer to two-body, 
the lower entries to three-body results 

Basis sets: 
c 0Li :1 .993 H:0.23 
7) as in Table 6, but without *l =0.0607 

~) ~) 

2-body corrections [h] 
Li-H 5.10 -3 
H-H 3.10-2; - 2 . 1 0 - 3 ;  3.10 -5 

3-body corrections [h] 
H-Li-H 2.10 -4 3.10 -4 
H - H - H  - 5 , 1 0  5 _2 .10-5  
a [b] 4.720 4.790 

4.713 4.820 
E [-h] - 6.6473 - 8.0327 

- 6.6469 - 8.0311 
Eg [hi 0.3477 0.3133 

0.3473 0.3117 
K [mdyn/A] 3.58 1.69 

3.57 1.60 

6.10-3 
2.10-2; - 2 . 1 0 - 3 ;  _8 .10 -7  

energies etc. from the non-orthogonal localized orbitals can be performed with the 
help of many-body corrections. Two-body corrections often prove to be sufficient. 
In this case, the total computational effort is comparable with that of a conven- 
tional HF calculation for pairs of orbital groups. 
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